STATE OF THE ART: CONCISE REVIEW

Lung Screening Benefits and Challenges: A Review of The Data and Outline for Implementation

Jacob Sands, MD, a,* Martin C. Tammemägi, PhD, b Sebastien Couraud, MD, PhD, c David R. Baldwin, MD, FRCP, d Andrea Borondy-Kitts, MS, MPH, e David Yankelevitz, MD, f Jennifer Lewis, MD, g,h,i Fred Grannis, MD, j Hans-Ulrich Kauczor, MD, k Oyunbileg von Stackelberg, PhD, k Lecia Sequist, MD, l Ugo Pastornino, MD, m Brady McKee, MD n

aDepartment of Medical Oncology, Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
bDepartment of Health Sciences, Brock University, St. Catharines, Ontario, Canada
cAcute Respiratory Disease and Thoracic Oncology Department, Lyon Sud Hospital, Hospices Civils de Lyon Cancer Institute; EMR-3738 Therapeutic Targeting in Oncology, Lyon Sud Medical Faculty, Lyon 1 University, Lyon, France
dRespiratory Medicine Unit, David Evans Research Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
eLung Cancer and Patient Advocate, Consultant Patient Outreach & Research Specialist, Lahey Hospital & Medical Center, Burlington, Massachusetts
fDepartment of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
gVA Tennessee Valley Healthcare System, Geriatric Research, Education and Clinical Center (GRECC), Nashville, Tennessee
hDivision of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
iVanderbilt Ingram Cancer Center, Nashville, Tennessee
jCity of Hope National Medical Center, Duarte, California
kDepartment of Diagnostic and Interventional Radiology and Translational Lung Research Center, Member of the German Center for Lung Research (DZL), University Hospital Heidelberg, Heidelberg, Germany
lMassachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
kmThoracic Surgery Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
nDivision of Radiology, Lahey Hospital & Medical Center, Burlington, Massachusetts

Received 13 July 2020; revised 18 September 2020; accepted 4 October 2020
Available online - 12 November 2020

*Corresponding author.

Disclosure: Dr. Sands reports receiving personal fees from Abbvie, AstraZeneca, Medtronic, Eli Lilly and Company, Boehringer Ingelheim, Loxo Oncology, Genentech, Foundation Medicine, Guardant, Pharmamar, and Jazz Pharmaceuticals and personal fees and nonfinancial support from Merck outside of the submitted work. Dr. Tammemägi owns copyright for the PLCOm2012 risk prediction model, use of which is free and open access for noncommercial users. Brock University owns the right to license the model for commercial use, and Dr. Tammemägi does not anticipate receiving any personal financial benefits related to use of the model. Dr. Couraud reports receiving grants from AstraZeneca, Roche, Amgen, Bayer, Bristol-Myers Squibb, Boehringer Ingelheim, Chugai, Laidet, Eli Lilly, Merck, Sharp & Dohme, Pfizer, and Takeda; personal fees from AstraZeneca, Roche, Bristol-Myers Squibb, Boehringer Ingelheim, Chugai, Laidet, Eli Lilly, Merck, Sharp & Dohme, and Takeda; and nonfinancial support from AstraZeneca, Roche, Sophia Genetics, and Sysmex Inostics outside of the submitted work. Dr. Baldwin reports receiving personal fees from AstraZeneca and the Medtronic Global Lung Health Summit 2019 outside of the submitted work; honoraria from the Patient-Centered Outcomes Research Institute and the Journal of the American College of Radiology outside of the submitted work; and travel reimbursement for conferences from the American Thoracic Society, the American Cancer Society, the American Lung Association, the International Association for the Study of Lung Cancer; the Journal of the American College of Radiology, the Patient-Centered Outcomes Research Institute, and the National Academy of Medicine, outside of the submitted work. Dr. Yankelevitz has a patent licensing agreement with Cornell University and General Electric, with royalties, has stock and other ownership interests with Accumeta, and serves as a consultant and advisor for Grail, outside of the submitted work. Dr. Grannis reports receiving grants from the International Early Lung Cancer Action Program and personal fees from Steven Phillips, an attorney, outside of the submitted work. Dr. Kauczor reports receiving personal fees from AstraZeneca, Boehringer Ingelheim, and Merck, Sharp & Dohme; grants and personal fees from Philips; and grants, personal fees, and nonfinancial support from Siemens outside of the submitted work. Dr. Sequist reports receiving grants from Loxo Oncology, Novartis, and Boehringer Ingelheim; personal fees from Janssen; and grants and personal fees from AstraZeneca, Genentech, Merrimack Pharmaceuticals, and Blueprint Medicines; and has an ownership interest in Blueprint Medicines and a related patent, all outside the submitted work. Dr. McKee reports receiving personal fees from AstraZeneca outside of the submitted work. The remaining authors declare no conflict of interest.

Address for correspondence: Jacob Sands, MD, Department of Medical Oncology, Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA 02215. E-mail: jacob_sands@dfci.harvard.edu

© 2020 International Association for the Study of Lung Cancer. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

ISSN: 1556-0864
https://doi.org/10.1016/j.jtho.2020.10.127

Journal of Thoracic Oncology Vol. 16 No. 1: 37-53
ABSTRACT

Lung cancer is the leading cause of cancer-related deaths worldwide, accounting for almost a fifth of all cancer-related deaths. Annual computed tomographic lung cancer screening (CTLS) detects lung cancer at earlier stages and reduces lung cancer-related mortality among high-risk individuals. Many medical organizations, including the U.S. Preventive Services Task Force, recommend annual CTLS in high-risk populations. However, fewer than 5% of individuals worldwide at high risk for lung cancer have undergone screening. In large part, this is owing to delayed implementation of CTLS in many countries throughout the world. Factors contributing to low uptake in countries with longstanding CTLS endorsement, such as the United States, include lack of patient and clinician awareness of current recommendations in favor of CTLS and clinician concerns about CTLS-related radiation exposure, false-positive results, overdiagnosis, and cost. This review of the literature serves to address these concerns by evaluating the potential risks and benefits of CTLS. Review of key components of a lung screening program, along with an updated shared decision aid, provides guidance for program development and optimization. Review of studies evaluating the population considered “high-risk” is included as this may affect future guidelines within the United States and other countries considering lung screening implementation.

© 2020 International Association for the Study of Lung Cancer. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Lung cancer screening; low-dose CT; LDCT; CTLS

Introduction

Lung cancer is the leading cause of cancer-related deaths worldwide, accounting for 1.76 million deaths in 2018 (18% of all cancer-related deaths). Every year, at least twice as many people die from lung cancer as from other common malignancies, including colorectal, stomach, liver, and breast cancer. Approximately 8 million people in the United States alone are eligible for computed tomographic lung cancer screening (CTLS), but in 2018, only 4% of eligible Americans were screened. If all high-risk individuals in the United States were screened, an estimated 48,000 lung cancer deaths could be prevented, a number that exceeds the total number of lives lost owing to breast cancer in the United States each year. Furthermore, lung cancer is the most frequently fatal cancer in the European Union, causing more than 266,000 deaths yearly (21% of all cancer-related deaths).

In this review of CTLS, we evaluate the potential risks and benefits in the current context, review perceived barriers to implementation, discuss key issues, and components of successful screening programs, review risk models, and provide a shared decision-making graphic for clinical use.

Lung Screening Trials: Examining the Evidence

Annual CTLS detects lung cancer at earlier stages than chest radiography (CXR) and leads to a reduction in lung cancer mortality in individuals at high risk for the disease. First suggested by the International Early Lung Cancer Action Program, a reduction in lung cancer mortality was confirmed by the National Lung Screening Trial (NLST), a U.S. multicenter, randomized controlled trial that enrolled more than 53,000 people and was halted early after detecting a significant 20% improvement ($p = 0.004$) in lung cancer mortality and a 6.7% improvement in overall mortality in individuals undergoing CTLS compared with those undergoing CXR. The NLST evaluated CTLS at baseline and annually for the following 2 years without a defined algorithm to guide management of abnormal screens and was not designed to evaluate the degree of benefit achieved by a prolonged screening program. However, an extended analysis of the NLST revealed that improvement in lung cancer specific mortality persisted up to 12.8 years.

Since the publication of the NLST in 2011, several other trials/analyses have evaluated the impact of CLTS (the key characteristics and main findings of the trials are summarized in Table 1). The Dutch-Belgian Randomized Lung Cancer Screening Trial (NELSON) randomized high-risk individuals to CTLS versus observation. CTLS was performed at 0, 1, 3, and 5.5 years. The trial involved more than 15,000 people aged 50–75 years with a high tobacco intake (≥15 cigarettes per d for ≥25 y or ≥10 cigarettes per d for ≥30 y; individuals who currently smoke or who quit ≤10 y previously). Approximately 84% were male individuals. In men, after 10 years of follow-up, the cumulative rate ratio for death owing to lung cancer between the CTLS arm and the control arm was 0.76 (95% confidence interval [CI]: 0.61–0.94; $p = 0.01$), representing a 24% reduction in lung cancer-related death in the CTLS arm. In women, the reduction in lung cancer-specific mortality was much greater. The benefit in both sexes persisted at 11 years. Among screened male participants, lung cancers were at stages I to II in 138 (68%) of 203 screen-detected lung cancers. In the same group, non-screen-detected lung cancers were at stages I to II in only 30 (21%) of 141 cases.
Table 1. Selected Lung Cancer Screening Studies

<table>
<thead>
<tr>
<th>Study Characteristics</th>
<th>NLST⁸,¹⁰</th>
<th>NELSON¹¹-¹⁴</th>
<th>MILD¹⁵,¹⁶</th>
<th>ITALUNG¹²,¹⁷-¹⁹</th>
<th>DLCST¹²,²⁰,²¹</th>
<th>UKLS²²,²³</th>
<th>DANTE²⁴,²⁵</th>
<th>LUSI²⁶</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Screening interval, y</td>
<td>1</td>
<td>1; 2; 2.5</td>
<td>1 or 2 (rand)</td>
<td>1</td>
<td>1</td>
<td>0/0.25/1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Number of screens, n</td>
<td>3</td>
<td>4</td>
<td>5 annual/3 biennial</td>
<td>4</td>
<td>5</td>
<td>1⁺</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Overall follow-up, y</td>
<td>7.4</td>
<td>10</td>
<td>10</td>
<td>8.5 (median)</td>
<td>10</td>
<td>10</td>
<td>8.35 (median)</td>
<td>8.8 (median)</td>
</tr>
<tr>
<td>Comparator</td>
<td>CXR</td>
<td>No screening</td>
</tr>
<tr>
<td>Inclusion criteria</td>
<td>Pack-years ≥ 30</td>
<td>≥15/d for >25y OR >10/d for >30y</td>
<td>≥20</td>
<td>≥20</td>
<td>≥20</td>
<td>NA d</td>
<td>≥20</td>
<td>≥15/d for V25y or ≥10/d for ≥30y</td>
</tr>
<tr>
<td>FS$: abstinence, y</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10 ≤10 (age >50 y)</td>
<td>–</td>
<td><10</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>Age, y</td>
<td>55-74</td>
<td>50-75</td>
<td>49-75; no cancer in <5 y</td>
<td>55-69</td>
<td>50-70</td>
<td>50-75</td>
<td>Males, 60-74</td>
<td>–</td>
</tr>
<tr>
<td>Patients</td>
<td>53,452</td>
<td>13,195c</td>
<td>4099</td>
<td>3206</td>
<td>4104</td>
<td>4055</td>
<td>2450</td>
<td>4052</td>
</tr>
<tr>
<td>Total randomized, n</td>
<td>26,722</td>
<td>6583j</td>
<td>2376</td>
<td>1613</td>
<td>2052</td>
<td>2028g</td>
<td>1264</td>
<td>2029</td>
</tr>
<tr>
<td>Age, y</td>
<td>61±5i</td>
<td>CTLS: 58 (55-63)12,20</td>
<td>Intr: 58 C: 58 (54-63)12,20</td>
<td>60.9±4i</td>
<td>57.9±5h</td>
<td>CTLS: 67.1±4.1</td>
<td>64 (5)i</td>
<td>C: 66.9±4.1i</td>
</tr>
<tr>
<td>Age range, y</td>
<td>55-74</td>
<td>CTLS: 46-76i</td>
<td>C: 34-89</td>
<td>49-75</td>
<td>55-69</td>
<td>50-70</td>
<td>50-75</td>
<td>60-74</td>
</tr>
<tr>
<td>Males, %</td>
<td>59.0</td>
<td>100c</td>
<td>68.4/63.3</td>
<td>64.7</td>
<td>55.2</td>
<td>~75</td>
<td>100</td>
<td>CTLS: 50.1</td>
</tr>
<tr>
<td>Smoking history</td>
<td>Pack-years</td>
<td>CTLS: 38 (30-50)12,20</td>
<td>39/38 (NR)i</td>
<td>40 (NR)i</td>
<td>S: 36.4±13.4g</td>
<td>NR</td>
<td>45 (30)i</td>
<td>NR</td>
</tr>
<tr>
<td>Currently smoke, %</td>
<td>48.2</td>
<td>CTLS: 55.5i</td>
<td>C: 54.8i</td>
<td>68.6/89.7</td>
<td>64.8</td>
<td>76.1</td>
<td>38.7</td>
<td>56.9</td>
</tr>
</tbody>
</table>

Key outcomes

<table>
<thead>
<tr>
<th>Primary outcome</th>
<th>20% ↓ in LC-related mortality</th>
<th>24% ↓ in LC-related mortality (10 y)f</th>
<th>39% ↓ in LC-related mortality (10 y)</th>
<th>17% ↓ in LC-related mortality; 30% reduction in overall mortality</th>
<th>No statistically significant effect on LC-related mortality</th>
<th>LC prevalence 1.7% at baseline</th>
<th>No statistically significant effect on LC-related mortality</th>
<th>No statistically significant effect on LC-related mortality</th>
</tr>
</thead>
</table>
| **Mortality, %** | General: CTLS/C 13.0/14.0k | 13.9 / 13.76$^{c, k}$ | 5.8/6.2 | 9.5/11.4 | 8.0/7.9 | NR | 14.2/14.8 | HR: 0.99 (95% CI: 0.79-1.25) $^p = 0.95$

(continued)
<table>
<thead>
<tr>
<th>Study Characteristics</th>
<th>NLST 8,10</th>
<th>NELSON $^{11-14}$</th>
<th>MILD 15,16</th>
<th>ITALUNG $^{12,17-19}$</th>
<th>DLCST 12,20,21</th>
<th>UKLS 22,23</th>
<th>DANTE 24,25</th>
<th>LUSI 26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung-cancer: CTLS/C</td>
<td>2.5/3.1a</td>
<td>2.5 / 3.3a</td>
<td>1.7/2.3</td>
<td>2.7/3.8</td>
<td>0.2/0.2</td>
<td>NR</td>
<td>4.7/4.6</td>
<td>HR: 0.74 (95% CI: 0.46-1.19) $p = 0.21$</td>
</tr>
<tr>
<td>Lung cancers detected, n CTLS/C</td>
<td>1701/1681b</td>
<td>203/304c</td>
<td>98/60d</td>
<td>67/71e</td>
<td>100/53f</td>
<td>42/NRg</td>
<td>104/72h</td>
<td>85/67i</td>
</tr>
<tr>
<td>Stage, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage I: CTLS/C</td>
<td>673 (40)/462 (27)</td>
<td>119 (59)/41 (14)j</td>
<td>49 (50)/13 (22)</td>
<td>24 (36)/8 (11)</td>
<td>50 (50)/8 (15)</td>
<td>28 (47)/NR</td>
<td>47 (45)/16 (22)</td>
<td>48 (57)/6 (9)</td>
</tr>
<tr>
<td>Stage II: CTLS/C</td>
<td>145 (9)/153 (9)</td>
<td>19 (9)/30 (10)j</td>
<td>4 (4)/5 (8)</td>
<td>5 (8)/5 (7)</td>
<td>4 (4)/2 (4)</td>
<td>8 (19)/NR</td>
<td>7 (7)/5 (7)</td>
<td>7 (8)/9 (13)</td>
</tr>
<tr>
<td>Stage III: CTLS/C</td>
<td>298 (18)/321 (19)</td>
<td>33 (16)/77 (25)j</td>
<td>16 (16)/10 (17)</td>
<td>9 (13)/8 (11)</td>
<td>23 (23)/9 (17)</td>
<td>3 (7)/NR</td>
<td>17 (16)/12 (17)</td>
<td>12 (14)/21 (31)</td>
</tr>
<tr>
<td>Stage IV: CTLS/C</td>
<td>468 (28)/597 (36)</td>
<td>19 (9)/139 (46)j</td>
<td>29 (30)/32 (53)</td>
<td>24 (36)/35 (49)</td>
<td>23 (23)/32 (60)</td>
<td>3 (7)/NR</td>
<td>26 (25)/33 (46)</td>
<td>17 (20)/30 (45)</td>
</tr>
<tr>
<td>Unknown stage: CTLS/C</td>
<td>112 (7)/143 (9)j</td>
<td>13 (6)/176j</td>
<td>0 (0)/0 (0)</td>
<td>5 (8)/15 (21)</td>
<td>0 (0)/2 (4)</td>
<td>0 (0)/NR</td>
<td>7 (7)/6 (8)</td>
<td>1 (1)/1 (2)</td>
</tr>
</tbody>
</table>

aRepeated only if category 2 nodule or above detected in initial screen.
bDLCST also specified: FEV1 at least 30% of predicted; able to climb two flights of stairs (total of 36 steps) without pausing.
cCigarettes per day.
dInclusion based on risk model (led to inclusion of two individuals who had never smoked).
ePeople who used to smoke were also required to meet the pack-year criterion.
fPrimary analysis (male patients only).
g1994 underwent CT screening.
hMean ± SD.
iMedian (IQR).
jData revealed are the average percentage between the treatment arms or the percentages for the treatment and control arms (as reported in each article).
kDeaths per 1000 person-years.
lOccult: CTLS = 5, CI = 4. C, control; CI, confidence interval; CS, people who currently smoke; CT, computed tomography; CTLS, computed tomographic lung screening; CXR, chest radiography; DANTE, Detection And screening of early lung cancer with Novel imaging Technoloogy; DLCST, Danish Lung Cancer Screening Trial; FS, people who used to smoke; FEV1, forced expiratory volume in 1 second; HR, hazard ratio; IQR, interquartile range; ITALUNG, Italian Lung Cancer Screening Trial; LC, lung cancer; LUSI, German Lung cancer Screening Intervention; MILD, Multicentric Italian Lung Detection; NELSON, Dutch-Belgian Randomized Lung Cancer Screening Trial; NLST, National Lung Screening Trial; NR, not reported; rand, randomized; UKLS, UK lung cancer screening trial.
Table 2. Recommended Eligibility Criteria for CTLS in Patients at High Risk of LC

<table>
<thead>
<tr>
<th>Guideline</th>
<th>Year</th>
<th>Age, y</th>
<th>Pack-Years, y</th>
<th>Time Since Stopped Smoking, y</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAFP24</td>
<td>2013</td>
<td>Insufficient evidence</td>
<td>eligibility criteria were based on one study (NLST); shared decision-making was recommended instead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AATS tier 135</td>
<td>2012</td>
<td>55-79</td>
<td>—</td>
<td>—</td>
<td>Must have additional risk (>5%) of developing lung cancer within 5 y (e.g., previous cancer, genetics)</td>
</tr>
<tr>
<td>AATS tier 235</td>
<td>2012</td>
<td>50-79</td>
<td>—</td>
<td>—</td>
<td>Lung cancer survivors with no evidence of disease for 4 y</td>
</tr>
<tr>
<td>AATS tier 2 (alternative35)</td>
<td>2012</td>
<td>Any</td>
<td>Any/none</td>
<td>Any/none</td>
<td>Lung cancer survivors with no evidence of disease for 4 y</td>
</tr>
<tr>
<td>ACCP36</td>
<td>2018</td>
<td>55-77</td>
<td>≥30</td>
<td>≤15</td>
<td>Evidence-based smoking cessation treatments are recommended</td>
</tr>
<tr>
<td>ACS17</td>
<td>2013</td>
<td>55-74</td>
<td>>30</td>
<td>≤15</td>
<td>“ Apparently healthy”</td>
</tr>
<tr>
<td>ALA38</td>
<td>2015</td>
<td>55-74</td>
<td>>30</td>
<td>≤15</td>
<td>Offered to asymptomatic Medicare beneficiaries if they agree to receive counseling and participate in shared decision-making before screening</td>
</tr>
<tr>
<td>ASCO/ATS39</td>
<td>2015</td>
<td>55-74</td>
<td>>30</td>
<td>≤15</td>
<td>Offered to asymptomatic Medicare beneficiaries if they agree to receive counseling and participate in shared decision-making before screening</td>
</tr>
<tr>
<td>CMS40</td>
<td>2015</td>
<td>55-77</td>
<td>>30</td>
<td>≤15</td>
<td>Offered to asymptomatic Medicare beneficiaries if they agree to receive counseling and participate in shared decision-making before screening</td>
</tr>
<tr>
<td>Japanese Imaging Guidelines48</td>
<td>2013</td>
<td>≥50</td>
<td>—</td>
<td>—</td>
<td>Brinkman index ≥ 600</td>
</tr>
<tr>
<td>K-LUCAS (NCCK)45</td>
<td>2018</td>
<td>55-74</td>
<td>>30</td>
<td>≤15</td>
<td>Must have additional risk factora</td>
</tr>
<tr>
<td>NCCN Cat 112</td>
<td>2017</td>
<td>55-74</td>
<td>>30</td>
<td><15</td>
<td>Alternatively, consider those with ≥1.3% threshold of lung cancer in a 6-year time frame, based on the PLCO2012 model</td>
</tr>
<tr>
<td>NCCN Cat 212</td>
<td>2017</td>
<td>50</td>
<td>>20</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>French (SPLF, IFCT, SIT)46</td>
<td>2012</td>
<td>55-74</td>
<td>>30</td>
<td><15</td>
<td>Currently being revised. Likely to use NELSON entry criteria (50-75 y old; 10 cig × 30 y or 15 cig × 25 y; former <15 y)</td>
</tr>
<tr>
<td>USPSTF28</td>
<td>2013</td>
<td>55-80</td>
<td>>30</td>
<td>≤15</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: The table was adapted from the ATS & ALA Lung screening implementation guide.8

aCancer history, family history of lung cancer in first-degree relative, COPD or pulmonary fibrosis, radon exposure, or occupational exposure.

AAFP, American Association of Family Physicians; AATS, American Association of Thoracic Surgery; ACCP, American College of Chest Physicians; ACS, American Cancer Society; ALA, American Lung Association; ASCO, American Society of Clinical Oncology; ATS, American Thoracic Society; COPD, chronic obstructive pulmonary disease; CTLS, computed tomographic lung screening; ERS, European Respiratory Society; ESR, European Society of Radiology; IFCT, The French Cooperative Thoracic Intergroup; K-LUCAS, Korean Lung Cancer Screening Project; LC, lung cancer; NCCN, National Comprehensive Cancer Network; NCCK, National Cancer Center, Korea; NELSON, Dutch-Belgian Randomized Lung Cancer Screening Trial; NLST, National Lung Screening Trial; SITC, Society for the Immunotherapy for Cancer; SPLF, Société de Pneumologie de Langue Française; USPSTF, U.S. Preventive Services Task Force.

occurring either between scheduled screening studies or after the last scheduled negative screening study, at 5.5 years of the 10-year study. The NLST reported similar trends; 70% of screen-detected lung cancer cases in the CTLS group were in early stage, compared with 37% of non-screen-detected cases largely during follow-up after the 3 rounds of screening.13 This suggests that ongoing regular screening, rather than years of follow-up without screening, would likely reveal an even greater difference in stage of diagnosis compared with the control arm with potential additional relative decrease in lung cancer mortality.

The Multicentric Italian Lung Detection study was conducted for 10 years and provided insight into the benefit of more prolonged consistent screening. This trial was initially designed to compare annual versus biennial CTLS versus no intervention.15 The results revealed a 39% improvement in the risk of lung cancer-related mortality at 10 years in the two CTLS arms (pooled together), compared with the control arm (hazard ratio [HR]: 0.61; 95% CI: 0.39–0.95).16 The magnitude of benefit increased when restricted to outcomes occurring after the fifth year of screening, leading to a 58% reduction in the risk of lung cancer-related mortality (HR: 0.42; 95% CI: 0.22–0.79).16 When pooled with the Multicentric Italian Lung Detection trial, the Detection And screening of early lung cancer with Novel imaging TEchnology trial revealed a benefit in lung cancer overall mortality with CTLS, compared with no screening27; similar findings were also found in the Italian Lung Cancer Screening Trial.17 Although the Danish Lung Cancer Screening Trial did not reveal a benefit of screening on lung cancer mortality versus the control arm, the results were calculated after only 5 years of follow-up.
years of follow-up with only 2000 subjects per arm, limiting the power of the study to find a mortality benefit.20 Finally, findings from the German Lung cancer Screening Intervention trial were in line with those from other trials, including the NLST and NELSON, suggesting a stronger reduction in lung cancer mortality after CTLS among women, compared with men.26 The accumulation of data and experience with CTLS exceed those of other routine cancer screenings and have led to important insights that further guide CTLS implementation and future studies for ongoing improvements.

Current Guidelines and Recommendations on CTLS

In December 2013, the U.S. Preventive Services Task Force (USPSTF) released their initial recommendation for lung screening.28 Most U.S. programs conducting CTLS at that time had adopted either the NLST– or the National Comprehensive Cancer Network (NCCN)–positive solid pulmonary nodule size thresholds of greater than or equal to 4 mm in a maximum (NLST) or mean (NCCN) diameter. In 2014, the NCCN and Lung-RADS increased the size threshold at which a solid pulmonary nodule would trigger a positive CTLS examination designation to greater than or equal to 6 mm in mean diameter, after research by multiple organizations revealed a considerable increase in positive predictive value and a minimal increase in false-negative examinations at this larger threshold size.29-33 In current clinical practice, analysis of the performance of CTLS should reflect this established positive size threshold when using two-dimensional measurements.

Many medical organizations recommend annual CTLS in populations at high risk of lung cancer. Table 2 summarizes the published guidelines. Although there are some minor variations between the definitions of "high-risk," the criteria used are generally driven by age and smoking history.8 More recent CTLS studies have

<table>
<thead>
<tr>
<th>Perceived barrier</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unwanted consequences of radiation exposure</td>
<td>Risk of radiation seems nonexistent or too low to be measurable No reported cases of radiation-induced malignancy</td>
</tr>
<tr>
<td>False-positive findings/overdiagnosis</td>
<td>False-positive findings occur less frequently than those that have been reported “False discovery” has been misinterpreted/misreported as “false-positive” No difference in rates of diagnosis between CTLS and chest radiography groups; suggests that overdiagnosis is not a major concern</td>
</tr>
<tr>
<td>Unnecessary invasive procedures</td>
<td>Low numbers of resections of benign nodules Need to consider balance between resection of benign nodules and watching lung cancer progress without action Implementing a standardized system reduces the number of unnecessary interventions</td>
</tr>
</tbody>
</table>

CTLS, computed tomographic lung screening.

Table 3. Common perceived Barriers to Lung Cancer Screening
Figure 1. Updated decision aid to support shared decision-making in clinical practice. (A) Lung screening outcomes per 100 high-risk individuals during full duration of screening eligibility. A scan result leading to at least a recommendation for follow-up imaging occurs in approximately 13% of baseline scans and 6% of yearly follow-up scans. (B) Five-year survival of all...
included individuals with less tobacco exposure, and consequently, adjustment to the recommendations may follow. We review the topic of “high-risk” in another section. Guidelines are yet to be published in People’s Republic of China, but thoughtful consideration specific to the population is underway. Additional guidelines on CTLS are available, including the European Society for Medical Oncology, the European Society of Thoracic Surgeons recommendations, and the European position statement on lung cancer screening.

Perceived Barriers to the Implementation of CTLS Screening for the Prevention of Lung Cancer

After publication of the NLST guidelines in the United States were updated to recommend CTLS in a high-risk population. Despite these longstanding recommendations, rates of screening implementation and uptake in the United States have been limited. A number of factors may contribute to the low uptake of CTLS (Table 3), including a lack of patient and clinician awareness of the mortality benefit of CTLS, clinician concerns about CTLS-related radiation exposure, false-positive results, overdiagnosis, and overtreatment, health system resource utilization, and cost-effectiveness. In addition, stigma against individuals who smoke and nihilism about lung cancer outcomes may bias both clinicians and patients. Most often, cancer screening occurs after a discussion with a primary care provider (PCP), and patients cite their PCP’s advice as important to their decision-making. It is therefore important for PCPs to understand the benefits and risks of CTLS and the appropriate screening criteria. Lack of CLTS knowledge may prevent PCPs from engaging in shared decision making (SDM) conversations with their patients. A recent study reported that PCPs who are less familiar with the qualifying CTLS criteria had 2.7 times higher odds of ordering CXR than CTLS. The Centers for Medicare & Medicaid Services (CMS) requires the use of a formal decision aid as part of CTLS SDM. An accurate decision aid that is understandable to the general public is critical, and we provide an updated decision aid for use in clinics (Fig. 1).

Although clinicians may have concerns about the level of radiation associated with CTLS, this risk appears minimal in the CTLS setting. According to the Health Physics Society, the risk of radiation in the diagnostic realm (<100 mSv) is either too low to measure or nonexistent. Although current guidelines recommend a computed tomography (CT) dose index (CTDIvol) of less than or equal to 3 mGy for standard-sized patients, an achievable dose for CTLS in clinical practice is less than half of this level. In addition, screening currently occurs in populations aged from 50/55 to 80 years in which any risk of radiation-induced cancer is less of a concern. Clinicians should consult their local guidelines for further information on radiation exposure.

The false-positive rate of screening examinations is a critical metric in assessing test effectiveness and should be part of every SDM discussion. The NLST reported that 24.2% of CTLS examinations performed were positive for a nodule greater than or equal to 4 mm in maximum diameter, resulting in a false-positive rate of 23.3%. Unfortunately, many subsequent publications describing the NLST results have misreported the 96.4% NLST false-discovery rate (the percent of positive examinations which is false-positive) as the false-positive rate. A reanalysis of the NSLT using greater than or equal to 6 mm mean diameter-positve solid nodule size threshold yielded a marked decrease in the false-positive rate to approximately 13% at baseline and 5% for subsequent annual screening examinations, which is similar to the false-positive rate of mammography. In many cases, a positive CTLS examination is followed by a repeat scan in 3 to 6 months; if stable, this interval follow-up examination will be considered negative, and an annual CTLS examination will be performed 12 months after. The NELSON protocol reported fewer false positives by including an “indeterminate” classification for certain nodules that required a repeat CT scan to monitor for changes in size before defining the final screening test outcome rather than classifying them as positive in the baseline examination. The U.K. Lung Cancer Screening trial (UKLS) investigators suggest that making the distinction between findings that require CT follow-up from findings that require referral for consideration of more invasive work-up may be meaningful for the patient’s perspective.

Following standardized reporting algorithms, such as International Early Lung Cancer Action Program, NELSON, NCCN protocol, and Lung-RADS, invasive procedures are limited to a subset of the most suspicious findings. It is important for all screening programs to use a standardized system to reduce the number of unnecessary interventions. Although low in numbers, resection of benign nodules does occur. It is important to balance the risk of resecting benign nodules and patients with lung cancer, by stage at diagnosis (not specific to screening). (C) Overall survival of all patients with lung cancer, by clinical stage (eighth edition of the TNM classification) at diagnosis (not specific to screening). Figure adapted from Goldstraw P. et al. J Thorac Oncol. 2016;11:39-51. Stage of lung cancer at diagnosis, diagnosed within (D) and outside of (E) CTLS programs. CTLS, computed tomographic lung screening.
watching suspected lung cancer progress without action. Distinguishing benign or indolent nodules from malignant nodules is an important area of ongoing research.

Although overdiagnosis was regarded as a concern after initial NLST estimate of 18%, recent analyses have indicated that overdiagnosis (and therefore overtreatment) may not be a substantial problem for CTLS. Follow-up data from the NLST revealed that there was no significant difference (rate ratio = 1.01) in diagnosed lung cancer between the CTLS and CXR groups with follow-up periods up to 11 years.

CTLS seems to be cost-effective in health care systems in which it was assessed and compares well with other routine cancer screenings, including colorectal, breast, and cervical cancers. An economic evaluation of the Manchester Lung Health Check pilot found that CTLS represents a cost-effective use of NHS resources. The cancer detection rate (CDR) was approximately 3%, and the cost-effectiveness ratio was approximately £10,000 per Quality-Adjusted Life Year, which is substantially less than the $81,000 per Quality-Adjusted Life Year calculated from the NLST. These findings have been supported by cost data from CTLS trials. For example, the PanCan screening study (Canada; CDR = 4% over 18 mo) reported that treating lung cancer with curative surgery is more cost-effective than treating late-stage lung cancer.

Sex and socioeconomic status may affect access to CTLS. A recent analysis revealed that patients in the CTLS programs tend to have relatively high socioeconomic status and are mostly male individuals, highlighting the need for strategies that focus on better engaging women and people with low-economic status at high-risk for lung cancer. In addition to limited access, some populations, including women and black men, have a higher risk of lung cancer after adjusting for other risk factors including age and smoking exposure. Therefore, some individuals that fail to meet CTLS eligibility criteria carry a higher risk of lung cancer than those who qualify. The perception of risk and concerns about developing lung cancer varies with age, race, and health insurance status, which should be considered in efforts to improve participation rates.

In the United States, despite the proven effectiveness of CTLS, established reimbursement, and years of near universal support from governmental agencies and medical societies, uptake remains low. To increase CTLS utilization, widespread awareness and education campaigns are needed to improve clinician engagement. Educational interventions should focus on appropriate CTLS settings and eligibility criteria. Engaging underserved at-risk populations is important as CTLS programs are initiated, to avoid increasing the considerable disparities that have been inherent within health care systems.

Key Issues and Components of Successful Lung Screening Programs

Implementation of a CTLS program requires several foundational elements that cover the entire CTLS pathway, from identification of the target population to treatment and follow-up. This begins with accurate selection of the people at high risk for lung cancer who would benefit from CTLS (section 5). Essential core elements of a CTLS program include a program navigator and a reliable database for nodule/patient monitoring. A multidisciplinary steering committee facilitates the management of a program that involves multiple specialties. Other aspects for particular attention include the following.

Participation

Participation requires a robust system to identify individuals for CTLS and to track participants over years of follow-up. In the United States, identification of individuals is generally accomplished by PCPs. The internal CTLS program infrastructure is of paramount importance to support PCPs and other ordering providers. Primary care representation on hospital CTLS steering committees is crucial to help identify workflow issues and system tools that may affect enrollment. Some more centralized health care systems around the world allow for systematized identification of individuals for CTLS. Attention to optimizing the involvement of all high-risk populations is of particular importance to prevent disparities. Smoking is increasingly concentrated in disadvantaged populations, including those living below the poverty level, those with disabilities, and those experiencing psychosocial distress. These populations often distrust the medical community and face structural challenges that reduce access to care. They often experience stigma and implicit bias, both as people who smoke and related to their disability, race/ethnicity, and socioeconomic situation. Partnering with community leaders and community health workers, along with developing empathetic, culturally appropriate outreach initiatives is essential to avoid exacerbating existing care access disparities. Some programs offer CTLS within a broader lung health-check framework. This may enhance participation because those involved feel that they are doing something positive about their health. It also reduces the focus on lung cancer, which may be alienating, and allows clinicians to capitalize on
Shared Decision-Making

SDM is an important component of any medical decision. In the United States, formal SDM, including use of a decision aid, is required by CMS to order CTLS. This CMS requirement for SDM is unique to CTLS and a potential barrier to screening uptake if overly cumbersome or misrepresenting the balance of risks and benefits. We provide an updated decision aid (Fig. 1) for use in clinical practice and encourage clinicians to print this for practical use during SDM discussions in clinic. This decision aid provides the background to allow for more effective discussion of patient preferences, because it incorporates the full duration of screening eligibility (as opposed to a certain number of screenings in a clinical trial setting). The components of the decision aid are organized to guide counseling of patients on risks versus benefits of lung screening, starting with the likelihood of diagnosis of lung cancer and risk of an unnecessary invasive procedure. This is followed by the implications of early detection, staging, and mortality for those who develop lung cancer. The first aspect of SDM for patients to consider is the risk-benefit ratio of CTLS. In Figure 1A, we outline the likelihood of diagnosis of lung cancer and the risk of an unnecessary invasive procedure from CTLS over the years of recommended screening. The likelihood of developing lung cancer in the CTLS-eligible population may be as high as 10% to 16%. Our decision aid conservatively estimates the risk at 10%. A 5-year survival chart (Fig. 1B) and survival curves (0–72 mo) by stage (Fig. 1C) provide context for the graphic revealing stage of diagnosis within a CTLS program (Fig. 1D) compared with diagnosis outside of a CTLS program (Fig. 1E). The larger randomized studies on lung screening each incorporate a limited number of scans followed by years without scans, during which higher numbers of later-stage lung cancer are diagnosed. Baseline scans also include a higher number of later-stage diagnoses than the following yearly scans. The stage breakdown in the figure is a representation of the experience of the authors with mature lung screening programs. This decision aid will remain accurate after the USPSTF has finalized its updated lung screening recommendations, because the lung cancer risk ratio will not substantially change in a younger population with less smoking history (start age of 50 y, with at least 20 pack years).

Standardized Radiology Reporting

Standardized radiology reporting is important to ensure pathway management of findings. In the absence of a standardized reporting system, management of nodules can be inconsistent, leading to overmanagement of benign nodules and potential for delays in the diagnosis of suspicious findings. An understanding of the currently available classification systems is important for the development and management of screening guidelines, but excessive focus on the pros and cons of the different management systems may prove to be a barrier to implementation. In the United States, nodule size and growth assessment rely on two-dimensional measurements (Table 1), whereas in parts of Europe, semiautomatically measured volume and volumedoubling time may be the preferred approach. It is undoubtable that reporting systems will evolve as CTLS understanding improves. Nevertheless, it is likely more important to follow an established guideline consistently than to delay implementation of a CTLS program owing to concerns about which guideline to follow.

Care Escalation Pathways

Care escalation pathways are required for all suspicious findings. Nodule clinics staffed by pulmonologists and/or thoracic surgeons, with input from radiology, are helpful and can reduce the burden on the ordering PCP, who may be less well-equipped to determine when biopsy or other intervention is indicated. Guidelines highlight when care escalation is recommended. Various guidelines/reporting systems use different CTLS overall examination assessment terminology (e.g., reports of “indeterminate” examinations in patients in the European NELSON trial correlate somewhat with Lung-RADS 3 “positive” and certain Lung-RADS 4A “suspicious” findings in the most typically used U.S. system). In either scenario, follow-up with a nodule specialist is critical for all “suspicious” findings to determine if intervention is indicated. The crucial consideration is the potential impact on the patient; an “indeterminate” Lung-RADS 3 classification generally implies a short interval repeat CTLS examination, whereas a “suspicious” classification implies the potential need for invasive interventions.

On the basis of our experience, reliable, standardized reporting systems should identify fewer than 8% of examinations per round of CTLS that warrant care escalation. Reasonable efforts should be made to avoid intervention for nonmalignant findings. An aggressive approach designed to eliminate delays in diagnosing lung cancer carries some risk of unnecessary intervention. A robust database for tracking nodules and outcomes can provide internal data necessary for individual clinicians and programs to monitor outcomes and rates of interventions for
<table>
<thead>
<tr>
<th>Model</th>
<th>Study Details</th>
<th>Validation (AUC)</th>
<th>Advantages/Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bach<sup>93</sup></td>
<td>U.S.; CHS; n = 18,172 45-69 y 20 pack-years, or quit in last 15 y</td>
<td>Internal: 0.72<sup>18</sup></td>
<td>Finland: 0.69<sup>19</sup> Only tested in high-risk CS/FS. Complicated data collection for asbestos exposure; may not be suitable for lung cancer screening programs</td>
</tr>
<tr>
<td>Liverpool Lung Project<sup>96</sup></td>
<td>U.K.; C-CS; n = 1736 20-80 y</td>
<td>Internal: 0.71<sup>16</sup></td>
<td>Europe: 0.67; U.S.: 0.76; U.K.: 0.82<sup>17</sup> Evidence for accurate prediction in people who do not smoke is lacking. Calibration appears poor in areas where decision thresholds may lie<sup>97</sup></td>
</tr>
<tr>
<td>Spitz<sup>98</sup></td>
<td>Texas C-CS; n = 3852 No restrictions<sup>a</sup> Test: NS: 0.57; FS: 0.63; CS 0.58</td>
<td>Massachusetts: 0.69<sup>15</sup></td>
<td>Massachusetts NS: 0.68; FS: 0.70; CS: 0.68<sup>95</sup> Some variables used to match case-control data were strong predictors of lung cancer; this reduced the predictive ability of the model</td>
</tr>
<tr>
<td>African American<sup>99</sup></td>
<td>Houston C-CS; n = 988 African American Development: 0.75 Test: 0.63 Development: 0.803 Test: 0.797</td>
<td>Multiple true external validations, in countries where AUC is ~ 0.80</td>
<td>No external validations conducted outside of the original study Included African Americans and indigenous Americans (at increased risk)</td>
</tr>
<tr>
<td>PLCO<sub>m2012</sub><sup>100</sup></td>
<td>U.S., 10 centers; CHS; n = 80,375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoggart<sup>101</sup></td>
<td>Western Europe; CHS 40-65 y ≥30 pack-years</td>
<td>Test: 1 y. CS: 0.824; FS: 0.830; ES: 0.843 5 y. CS: 0.767; FS: 0.715; ES: 0.787</td>
<td>Limited range of predictors Needs external validation in other populations</td>
</tr>
<tr>
<td>Pittsburgh predictor<sup>102</sup></td>
<td>Pittsburgh; CHS; n = 57,096 50-79 y CS/FS; strong smoking history</td>
<td>Internal: 0.678</td>
<td>Pittsburgh: 0.701 Relatively simple model; lower accuracy of prediction. Derived/validated in preselected high-risk populations (not representative of general population of people who smoke)</td>
</tr>
<tr>
<td>LCRAT/ LDCRAT<sup>103</sup></td>
<td>U.S.: CHS; n = 154,901 55-74 y CS/FS;</td>
<td>Internal: 0.70-0.80</td>
<td>Included Hispanic, Asian, and black (non-Hispanic) people</td>
</tr>
<tr>
<td>Biobank<sup>104</sup></td>
<td>U.K.: CHS; n = 502,321 37-73 y Development: 0.84 Test: 0.83</td>
<td></td>
<td>First model to use lung function (no increase in predictive ability). People who had never smoked inflated AUC</td>
</tr>
<tr>
<td>HUNT<sup>105</sup></td>
<td>Norway n = 65,237 >20 y</td>
<td>Internal: 0.72<sup>18</sup></td>
<td>Finland: 0.69<sup>19</sup> Only tested in high-risk CS/FS. Complicated data collection for asbestos exposure; may not be suitable for lung cancer screening programs</td>
</tr>
</tbody>
</table>

Note: Frequently reported and assessed plus recently developed risk prediction models, with potential to identify high-risk individuals for lung cancer screening.

*a*Emphasis on enrolling subsets of special interest, including minority patients, younger patients (<50 y old), and people who had never smoked during their lifetime.

AUC, area under the curve; CS, people who currently smoke; C-CS, case-control study; CHS, cohort study; ES, people who have smoked during their lifetime; FS, people who used to smoke; GP, general population; LCRAT, lung cancer risk assessment tool; LDCRAT, lung cancer death risk assessment tool; NA, not available; NS, people who have never smoked.
malignant or benign nodules. Like all types of clinical care, experience improves the process and the outcomes.

Significant Incidental Findings

Significant incidental findings lack a consensus definition. Widespread adoption of a standard definition would enhance the development of management guidelines. Some centers consider a “significant incidental finding” to be any new or unknown unexpected finding that warrants some form of clinical or imaging evaluation before the next scheduled CTLS examination. Emphysema and coronary artery calcifications are highly prevalent in the CTLS-eligible population. In this regard, they are not unexpected and therefore are not classified as “significant incidental findings”. Instead, they are expected findings on CTLS examinations that should be reported and managed accordingly. In contrast, an unknown breast, renal, or liver mass without benign radiographic features would qualify as a “significant incidental finding” requiring urgent targeted clinical/imaging assessment.

Smoking Cessation Counseling

Smoking cessation counseling is an important aspect of CTLS. Higher levels of sustained quit rates have been noted in CTLS programs relative to the general smoking population. CTLS provides multiple opportunities to counsel and provide advice on quitting for patients who smoke. Studies have revealed that even a brief three-minute intervention on cessation can increase quit rates. In just one year of CTLS program enrollment, there are up to six opportunities for smoking cessation advice/counseling. In fact, one study of smoking cessation in a clinical CTLS program found that the longer a person was in a screening program, the more likely they were to quit smoking. Opportunities for increased smoking cessation rates in CTLS programs have

<p>| Table 4B. Predictive Factors Included in Risk Prediction Models for Lung Cancer |</p>
<table>
<thead>
<tr>
<th>Model</th>
<th>Bach93</th>
<th>Liverpool Lung Project96</th>
<th>Spitz98</th>
<th>African American99</th>
<th>PLCOm2012100</th>
<th>Hoggart101</th>
<th>Pittsburgh Predictor102</th>
<th>LCRAT/LDCRAT103</th>
<th>Biobank104</th>
<th>HUNT105</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predictive Factors</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body mass index</td>
<td></td>
</tr>
<tr>
<td>Race/ethnicity</td>
<td></td>
</tr>
<tr>
<td>Socioeconomic status (education)</td>
<td></td>
</tr>
<tr>
<td>Smoking history/abstinence</td>
<td></td>
</tr>
<tr>
<td>Lung function test</td>
<td></td>
</tr>
<tr>
<td>Recent chest radiography</td>
<td></td>
</tr>
<tr>
<td>History of hay fever</td>
<td></td>
</tr>
<tr>
<td>Family history of lung cancer</td>
<td></td>
</tr>
<tr>
<td>Personal history of cancer</td>
<td></td>
</tr>
<tr>
<td>Secondary smoke exposure</td>
<td></td>
</tr>
<tr>
<td>Asbestos exposure</td>
<td></td>
</tr>
<tr>
<td>Dust exposure</td>
<td></td>
</tr>
<tr>
<td>Pneumonia (previous diagnosis)</td>
<td></td>
</tr>
<tr>
<td>Malignant tumor</td>
<td></td>
</tr>
<tr>
<td>COPD</td>
<td></td>
</tr>
<tr>
<td>SNPs</td>
<td></td>
</tr>
<tr>
<td>Environment</td>
<td></td>
</tr>
</tbody>
</table>

*Previous respiratory disease.

*Previous diagnosis of emphysema.

Ten occupational/environmental exposures previously implicated with lung cancer. COPD, chronic obstructive pulmonary disease; LCRAT, lung cancer risk assessment tool; LDCRAT, lung cancer death risk assessment tool; SNPs, single-nucleotide polymorphisms associated with lung cancer.
additional benefits of improving health outcomes from other tobacco-related diseases, such as heart disease, chronic obstructive pulmonary disease (COPD), and many other cancers. Including smoking cessation in CTLS also improves the cost-effectiveness of the program.22

Use of Risk Models

In recent years, a number of risk-prediction models have been developed (Table 493-105 and B93,96,98-105), with the aim of improving the selection of individuals for lung cancer screening. Compared with applying the eligibility criteria of the NLST trial, or related criteria such as those recommended by the USPSTF or CMS, risk prediction modeling more accurately selects individuals at higher risk of lung cancer. These models may optimize screening outcomes, such as the number needed to screen to avoid one death.22,103,106 Recently, the International Lung Screening Trial (ILST) initiative used both the PLCO\textsubscript{m2012} and USPSTF models as entry criteria in a screening program.107 PLCO\textsubscript{m2012} alone identified 25\% of cancers, whereas only 1.6\% of cancers were found using USPSTF criteria.107 Risk modeling is more granular when assessing individual risks and can account for nonlinear relationships to improve predictive accuracy. In addition, the PLCO\textsubscript{m2012} risk model has been found to reduce the disparity in eligibility for screening using age and tobacco history for blacks as compared with whites.79 Risk models can be enhanced by including additional predictors, such as the patient’s latest CTLS or biomarker results.108,109 As technologies improve, deep learning algorithms may further enhance lung cancer screening.110 However, many models are not practical for population-based CTLS, because they require blood or genetic tests, or extensive medical record data, or are limited to specific populations. There is a need for greater incorporation of prediction modeling into the CTLS guidelines and programs.

Summary

Understanding of the risks and benefits of CTLS and important components of a successful CTLS program have evolved with increasing studies/trials and CTLS program experience. Some early assumptions and conclusions have persisted, and some have been misinterpreted and incorrectly reported. It is essential that comprehensive CTLS programs be implemented, rather than arising as a byproduct of sporadic ordering of scans by providers without a program infrastructure in place. Given the potential for such a large number of lives to be positively affected by a timely diagnosis of early stage treatable disease, the initiation of CTLS programs should be given the highest priority by health care institutions and providers.

Acknowledgments

Medical writing support, which was in accordance with the Good Publication Practice guidelines, was provided by Michael Simpson, of Cirrus Communications (Macclesfield, U.K.), an Ashfield company, and was funded by AstraZeneca. AstraZeneca played no role in the collection, analysis, and interpretation of data or the writing of the report; the decision to submit the article for publication was made solely by the authors. Dr. Sands contributed to Conceptualization, funding acquisition, writing—original draft, writing—review and editing of the manuscript. Drs. Tammemägi, Sebastien Couraud, Baldwin, Borondy-Kitts, Yankelevitz, Lewis, Grannis, Kauczor, Stackelberg, Sequist, Pastorino, and McKee writing—review and editing of the manuscript.

References

